List of Prime Factorizations of Integers from 2 to 200
For your convenience, I have listed the unique prime factorizations of integers from 2 to 200. To make it look more compact, repeated prime numbers are expressed in exponential forms.
- 2 is prime.
- 3 is prime.
- 4 = {2^2}
- 5 is prime.
- 6 = 2 \cdot 3
- 7 is prime.
- 8 = {2^3}
- 9 = {3^2}
- 10 = 2 \cdot 5
- 11 is prime.
- 12 = {2^2} \cdot 3
- 13 is prime.
- 14 = 2 \cdot 7
- 15 = 3 \cdot 5
- 16 = {2^4}
- 17 is prime.
- 18 = 2 \cdot {3^2}
- 19 is prime.
- 20 = {2^2} \cdot 5
- 21 = 3 \cdot 7
- 22 = 2 \cdot 11
- 23 is prime.
- 24 = {2^3} \cdot 3
- 25 = {5^2}
- 26 = 2 \cdot 13
- 27 = {3^3}
- 28 = {2^2} \cdot 7
- 29 is prime.
- 30 = 2 \cdot 3 \cdot 5
- 31 is prime.
- 32 = {2^5}
- 33 = 3 \cdot 11
- 34 = 2 \cdot 17
- 35 = 5 \cdot 7
- 36 = {2^2} \cdot {3^2}
- 37 is prime.
- 38 = 2 \cdot 19
- 39 is prime.
- 40 = {2^3} \cdot 5
- 41 is prime.
- 42 = 2 \cdot 3 \cdot 7
- 43 is prime.
- 44 = {2^2} \cdot 11
- 45 = {3^2} \cdot 5
- 46 = 2 \cdot 23
- 47 is prime.
- 48 = {2^4} \cdot 3
- 49 = {7^2}
- 50 = 2 \cdot {5^2}
- 51 = 3 \cdot 17
- 52 = {2^2} \cdot 13
- 53 is prime.
- 54 = 2 \cdot {3^3}
- 55 = 5 \cdot 11
- 56 = {2^3} \cdot 7
- 57 = 3 \cdot 19
- 58 = 2 \cdot 29
- 59 is prime.
- 60 = {2^2} \cdot 3 \cdot 5
- 61 is prime.
- 62 = 2 \cdot 31
- 63 = {3^2} \cdot 7
- 64 = {2^6}
- 65 = 5 \cdot 13
- 66 = 2 \cdot 3 \cdot 11
- 67 is prime.
- 68 = {2^2} \cdot 17
- 69 = 3 \cdot 23
- 70 = 2 \cdot 5 \cdot 7
- 71 is prime.
- 72 = {2^3} \cdot {3^2}
- 73 is prime.
- 74 = 2 \cdot 37
- 75 = 3 \cdot {5^2}
- 76 = {2^2} \cdot 19
- 77 = 7 \cdot 11
- 78 = 2 \cdot 3 \cdot 13
- 79 is prime.
- 80 = {2^4} \cdot 5
- 81 = {3^4}
- 82 = 2 \cdot 41
- 83 is prime.
- 84 = {2^2} \cdot 3 \cdot 7
- 85 = 5 \cdot 17
- 86 = 2 \cdot 43
- 87 = 3 \cdot 29
- 88 = {2^3} \cdot 11
- 89 is prime.
- 90 = 2 \cdot {3^2} \cdot 5
- 91 = 7 \cdot 13
- 92 = {2^2} \cdot 23
- 93 = 3 \cdot 31
- 94 = 2 \cdot 47
- 95 = 5 \cdot 19
- 96 = {2^5} \cdot 3
- 97 is prime.
- 98 = 2 \cdot {7^2}
- 99 = {3^2} \cdot 11
- 100 = {2^2} \cdot {5^2}
- 101 is prime.
- 102 = 2 \cdot 3 \cdot 17
- 103 is prime.
- 104 = {2^3} \cdot 13
- 105 = 3 \cdot 5 \cdot 7
- 106 = 2 \cdot 53
- 107 is prime.
- 108 = {2^2} \cdot {3^3}
- 109 is prime.
- 110 = 2 \cdot 5 \cdot 11
- 111 = 3 \cdot 37
- 112 = {2^4} \cdot 7
- 113 is prime.
- 114 = 2 \cdot 3 \cdot 19
- 115 = 5 \cdot 23
- 116 = {2^2} \cdot 29
- 117 = {3^2} \cdot 13
- 118 = 2 \cdot 59
- 119 = 7 \cdot 17
- 120 = {2^3} \cdot 3 \cdot 5
- 121 = {11^2}
- 122 = 2 \cdot 61
- 123 = 3 \cdot 41
- 124 = {2^2} \cdot 31
- 125 = {5^3}
- 126 = 2 \cdot {3^2} \cdot 7
- 127 is prime.
- 128 = {2^7}
- 129 = 3 \cdot 43
- 130 = 2 \cdot 5 \cdot 13
- 131 is prime.
- 132 = {2^2} \cdot 3 \cdot 11
- 133 = 7 \cdot 19
- 134 = 2 \cdot 67
- 135 = {3^3} \cdot 5
- 136 = {2^3} \cdot 17
- 137 is prime.
- 138 = 2 \cdot 3 \cdot 23
- 139 is prime.
- 140 = {2^2} \cdot 5 \cdot 7
- 141 = 3 \cdot 47
- 142 = 2 \cdot 71
- 143 = 11 \cdot 13
- 144 = {2^4} \cdot {3^2}
- 145 = 5 \cdot 29
- 146 = 2 \cdot 73
- 147 = 3 \cdot {7^2}
- 148 = {2^2} \cdot 37
- 149 is prime.
- 150 = 2 \cdot 3 \cdot {5^2}
- 151 is prime.
- 152 = {2^3} \cdot 19
- 153 = {3^2} \cdot 17
- 154 = 2 \cdot 7 \cdot 11
- 155 = 5 \cdot 31
- 156 = {2^2} \cdot 3 \cdot 13
- 157 is prime.
- 158 = 2 \cdot 79
- 159 = 3 \cdot 53
- 160 = {2^5} \cdot 5
- 161 = 7 \cdot 23
- 162 = 2 \cdot {3^4}
- 163 is prime.
- 164 = {2^2} \cdot 41
- 165 = 3 \cdot 5 \cdot 11
- 166 = 2 \cdot 83
- 167 is prime.
- 168 = {2^3} \cdot 3 \cdot 7
- 169 = {13^2}
- 170 = 2 \cdot 5 \cdot 17
- 171 = {3^2} \cdot 19
- 172 = {2^2} \cdot 43
- 173 is prime.
- 174 = 2 \cdot 3 \cdot 29
- 175 = {5^2} \cdot 7
- 176 = {2^4} \cdot 11
- 177 = 3 \cdot 59
- 178 = 2 \cdot 89
- 179 is prime.
- 180 = {2^2} \cdot {3^2} \cdot 5
- 181 is prime.
- 182 = 2 \cdot 7 \cdot 13
- 183 = 3 \cdot 61
- 184 = {2^3} \cdot 23
- 185 = 5 \cdot 37
- 186 = 2 \cdot 3 \cdot 31
- 187 = 11 \cdot 17
- 188 = {2^2} \cdot 47
- 189 = {3^3} \cdot 7
- 190 = 2 \cdot 5 \cdot 19
- 191 is prime.
- 192 = {2^6} \cdot 3
- 193 is prime.
- 194 = 2 \cdot 97
- 195 = 3 \cdot 5 \cdot 13
- 196 = {2^2} \cdot {7^2}
- 197 is prime.
- 198 = 2 \cdot {3^2} \cdot 11
- 199 is prime.
- 200 = {2^3} \cdot {5^2}
You might also be interested in:
Fundamental Theorem of Arithmetic
Prime Factorization of an Integer
List of Prime Factorizations of Integers from 201 to 400
List of Prime Factorizations of Integers from 401 to 600