# List of Prime Factorizations of Integers from 2 to 200

For your convenience, I have listed the unique prime factorizations of integers from $2$ to $200$. To make it look more compact, repeated prime numbers are expressed in exponential forms.

• $2$ is prime.
• $3$ is prime.
• $4 = {2^2}$
• $5$ is prime.
• $6 = 2 \cdot 3$
• $7$ is prime.
• $8 = {2^3}$
• $9 = {3^2}$
• $10 = 2 \cdot 5$
• $11$ is prime.
• $12 = {2^2} \cdot 3$
• $13$ is prime.
• $14 = 2 \cdot 7$
• $15 = 3 \cdot 5$

• $16 = {2^4}$
• $17$ is prime.
• $18 = 2 \cdot {3^2}$
• $19$ is prime.
• $20 = {2^2} \cdot 5$
• $21 = 3 \cdot 7$
• $22 = 2 \cdot 11$
• $23$ is prime.
• $24 = {2^3} \cdot 3$
• $25 = {5^2}$

• $26 = 2 \cdot 13$
• $27 = {3^3}$
• $28 = {2^2} \cdot 7$
• $29$ is prime.
• $30 = 2 \cdot 3 \cdot 5$
• $31$ is prime.
• $32 = {2^5}$
• $33 = 3 \cdot 11$
• $34 = 2 \cdot 17$
• $35 = 5 \cdot 7$

• $36 = {2^2} \cdot {3^2}$
• $37$ is prime.
• $38 = 2 \cdot 19$
• $39$ is prime.
• $40 = {2^3} \cdot 5$
• $41$ is prime.
• $42 = 2 \cdot 3 \cdot 7$
• $43$ is prime.
• $44 = {2^2} \cdot 11$
• $45 = {3^2} \cdot 5$
• $46 = 2 \cdot 23$
• $47$ is prime.
• $48 = {2^4} \cdot 3$

• $49 = {7^2}$
• $50 = 2 \cdot {5^2}$
• $51 = 3 \cdot 17$
• $52 = {2^2} \cdot 13$
• $53$ is prime.
• $54 = 2 \cdot {3^3}$
• $55 = 5 \cdot 11$
• $56 = {2^3} \cdot 7$
• $57 = 3 \cdot 19$
• $58 = 2 \cdot 29$
• $59$ is prime.
• $60 = {2^2} \cdot 3 \cdot 5$
• $61$ is prime.
• $62 = 2 \cdot 31$
• $63 = {3^2} \cdot 7$
• $64 = {2^6}$
• $65 = 5 \cdot 13$
• $66 = 2 \cdot 3 \cdot 11$
• $67$ is prime.
• $68 = {2^2} \cdot 17$
• $69 = 3 \cdot 23$
• $70 = 2 \cdot 5 \cdot 7$
• $71$ is prime.
• $72 = {2^3} \cdot {3^2}$
• $73$ is prime.
• $74 = 2 \cdot 37$
• $75 = 3 \cdot {5^2}$

• $76 = {2^2} \cdot 19$
• $77 = 7 \cdot 11$
• $78 = 2 \cdot 3 \cdot 13$
• $79$ is prime.
• $80 = {2^4} \cdot 5$
• $81 = {3^4}$
• $82 = 2 \cdot 41$
• $83$ is prime.
• $84 = {2^2} \cdot 3 \cdot 7$
• $85 = 5 \cdot 17$
• $86 = 2 \cdot 43$
• $87 = 3 \cdot 29$
• $88 = {2^3} \cdot 11$
• $89$ is prime.
• $90 = 2 \cdot {3^2} \cdot 5$
• $91 = 7 \cdot 13$
• $92 = {2^2} \cdot 23$
• $93 = 3 \cdot 31$
• $94 = 2 \cdot 47$
• $95 = 5 \cdot 19$
• $96 = {2^5} \cdot 3$
• $97$ is prime.
• $98 = 2 \cdot {7^2}$
• $99 = {3^2} \cdot 11$
• $100 = {2^2} \cdot {5^2}$
• $101$ is prime.
• $102 = 2 \cdot 3 \cdot 17$
• $103$ is prime.
• $104 = {2^3} \cdot 13$
• $105 = 3 \cdot 5 \cdot 7$
• $106 = 2 \cdot 53$
• $107$ is prime.
• $108 = {2^2} \cdot {3^3}$
• $109$ is prime.
• $110 = 2 \cdot 5 \cdot 11$
• $111 = 3 \cdot 37$
• $112 = {2^4} \cdot 7$
• $113$ is prime.
• $114 = 2 \cdot 3 \cdot 19$
• $115 = 5 \cdot 23$
• $116 = {2^2} \cdot 29$
• $117 = {3^2} \cdot 13$
• $118 = 2 \cdot 59$
• $119 = 7 \cdot 17$
• $120 = {2^3} \cdot 3 \cdot 5$
• $121 = {11^2}$
• $122 = 2 \cdot 61$
• $123 = 3 \cdot 41$
• $124 = {2^2} \cdot 31$
• $125 = {5^3}$
• $126 = 2 \cdot {3^2} \cdot 7$
• $127$ is prime.
• $128 = {2^7}$
• $129 = 3 \cdot 43$
• $130 = 2 \cdot 5 \cdot 13$
• $131$ is prime.
• $132 = {2^2} \cdot 3 \cdot 11$
• $133 = 7 \cdot 19$
• $134 = 2 \cdot 67$
• $135 = {3^3} \cdot 5$
• $136 = {2^3} \cdot 17$
• $137$ is prime.
• $138 = 2 \cdot 3 \cdot 23$
• $139$ is prime.
• $140 = {2^2} \cdot 5 \cdot 7$
• $141 = 3 \cdot 47$
• $142 = 2 \cdot 71$
• $143 = 11 \cdot 13$
• $144 = {2^4} \cdot {3^2}$
• $145 = 5 \cdot 29$
• $146 = 2 \cdot 73$
• $147 = 3 \cdot {7^2}$
• $148 = {2^2} \cdot 37$
• $149$ is prime.
• $150 = 2 \cdot 3 \cdot {5^2}$
• $151$ is prime.
• $152 = {2^3} \cdot 19$
• $153 = {3^2} \cdot 17$
• $154 = 2 \cdot 7 \cdot 11$
• $155 = 5 \cdot 31$
• $156 = {2^2} \cdot 3 \cdot 13$
• $157$ is prime.
• $158 = 2 \cdot 79$
• $159 = 3 \cdot 53$
• $160 = {2^5} \cdot 5$
• $161 = 7 \cdot 23$
• $162 = 2 \cdot {3^4}$
• $163$ is prime.
• $164 = {2^2} \cdot 41$
• $165 = 3 \cdot 5 \cdot 11$
• $166 = 2 \cdot 83$
• $167$ is prime.
• $168 = {2^3} \cdot 3 \cdot 7$
• $169 = {13^2}$
• $170 = 2 \cdot 5 \cdot 17$
• $171 = {3^2} \cdot 19$
• $172 = {2^2} \cdot 43$
• $173$ is prime.
• $174 = 2 \cdot 3 \cdot 29$
• $175 = {5^2} \cdot 7$
• $176 = {2^4} \cdot 11$
• $177 = 3 \cdot 59$
• $178 = 2 \cdot 89$
• $179$ is prime.
• $180 = {2^2} \cdot {3^2} \cdot 5$
• $181$ is prime.
• $182 = 2 \cdot 7 \cdot 13$
• $183 = 3 \cdot 61$
• $184 = {2^3} \cdot 23$
• $185 = 5 \cdot 37$
• $186 = 2 \cdot 3 \cdot 31$
• $187 = 11 \cdot 17$
• $188 = {2^2} \cdot 47$
• $189 = {3^3} \cdot 7$
• $190 = 2 \cdot 5 \cdot 19$
• $191$ is prime.
• $192 = {2^6} \cdot 3$
• $193$ is prime.
• $194 = 2 \cdot 97$
• $195 = 3 \cdot 5 \cdot 13$
• $196 = {2^2} \cdot {7^2}$
• $197$ is prime.
• $198 = 2 \cdot {3^2} \cdot 11$
• $199$ is prime.
• $200 = {2^3} \cdot {5^2}$

You may also be interested in these related math lessons or tutorials:

Fundamental Theorem of Arithmetic

Prime Factorization of an Integer

List of Prime Factorizations of Integers from 201 to 400

List of Prime Factorizations of Integers from 401 to 600

List of Prime Factorizations of Integers from 601 to 800

List of Prime Factorizations of Integers from 801 to 1,000