List of Prime Factorizations of Integers from 201 to 400

Below is the list of prime factorizations of integers from 201 to 400. Prime factors that repeat are written as exponential expressions.


  • 201 = 3 \cdot 67
  • 202 = 2 \cdot 101
  • 203 = 7 \cdot 29
  • 204 = {2^2} \cdot 3 \cdot 17
  • 205 = 5 \cdot 41
  • 206 = 2 \cdot 103
  • 207 = {3^2} \cdot 23
  • 208 = {2^4} \cdot 13
  • 209 = 11 \cdot 19
  • 210 = 2 \cdot 3 \cdot 5 \cdot 7
  • 211 is prime.
  • 212 = {2^2} \cdot 53
  • 213 = 3 \cdot 71
  • 214 = 2 \cdot 107
  • 215 = 5 \cdot 43
  • 216 = {2^3} \cdot {3^3}
  • 217 = 7 \cdot 31
  • 218 = 2 \cdot 109
  • 219 = 3 \cdot 73
  • 220 = {2^2} \cdot 5 \cdot 11

  • 221 = 13 \cdot 17
  • 222 = 2 \cdot 3 \cdot 37
  • 223 is prime.
  • 224 = {2^5} \cdot 7
  • 225 = {3^2} \cdot {5^2}
  • 226 = 2 \cdot 113
  • 227 is prime.
  • 228 = {2^2} \cdot 3 \cdot 19
  • 229 is prime.
  • 230 = 2 \cdot 5 \cdot 23
  • 231 = 3 \cdot 7 \cdot 11

  • 232 = {2^3} \cdot 29
  • 233 is prime.
  • 234 = 2 \cdot {3^2} \cdot 13
  • 235 = 5 \cdot 47
  • 236 = {2^2} \cdot 59
  • 237 = 3 \cdot 79
  • 238 = 2 \cdot 7 \cdot 17
  • 239 is prime.
  • 240 = {2^4} \cdot 3 \cdot 5
  • 241 is prime.
  • 242 = 2 \cdot {11^2}
  • 243 = {3^5}
  • 244 = {2^2} \cdot 61
  • 245 = 5 \cdot {7^2}

  • 246 = 2 \cdot 3 \cdot 41
  • 247 = 13 \cdot 19
  • 248 = {2^3} \cdot 31
  • 249 = 3 \cdot 83
  • 250 = 2 \cdot {5^3}
  • 251 is prime.
  • 252 = {2^2} \cdot {3^2} \cdot 7
  • 253 = 11 \cdot 23
  • 254 = 2 \cdot 127
  • 255 = 3 \cdot 5 \cdot 17
  • 256 = {2^8}
  • 257 is prime.
  • 258 = 2 \cdot 3 \cdot 43

  • 259 = 7 \cdot 37
  • 260 = {2^2} \cdot 5 \cdot 13
  • 261 = {3^2} \cdot 29
  • 262 = 2 \cdot 131
  • 263 is prime.
  • 264 = {2^3} \cdot 3 \cdot 11
  • 265 = 5 \cdot 53
  • 266 = 2 \cdot 7 \cdot 19
  • 267 = 3 \cdot 89
  • 268 = {2^2} \cdot 67
  • 269 is prime.
  • 270 = 2 \cdot {3^3} \cdot 5
  • 271 is prime.
  • 272 = {2^4} \cdot 17
  • 273 = 3 \cdot 7 \cdot 13
  • 274 = 2 \cdot 137
  • 275 = {5^2} \cdot 11
  • 276 = {2^2} \cdot 3 \cdot 23
  • 277 is prime.
  • 278 = 2 \cdot 139
  • 279 = {3^2} \cdot 31
  • 280 = {2^3} \cdot 5 \cdot 7
  • 281 is prime.
  • 282 = 2 \cdot 3 \cdot 47
  • 283 is prime.
  • 284 = {2^2} \cdot 71
  • 285 = 3 \cdot 5 \cdot 19
  • 286 = 2 \cdot 11 \cdot 13
  • 287 = 7 \cdot 41
  • 288 = {2^5} \cdot {3^2}
  • 289 = {17^2}
  • 290 = 2 \cdot 5 \cdot 29
  • 291 = 3 \cdot 97
  • 292 = {2^2} \cdot 73
  • 293 is prime.
  • 294 = 2 \cdot 3 \cdot {7^2}
  • 295 = 5 \cdot 59
  • 296 = {2^3} \cdot 37
  • 297 = {3^3} \cdot 11
  • 298 = 2 \cdot 149
  • 299 = 13 \cdot 23
  • 300 = {2^2} \cdot 3 \cdot {5^2}
  • 301 = 7 \cdot 43
  • 302 = 2 \cdot 151
  • 303 = 3 \cdot 101
  • 304 = {2^4} \cdot 19
  • 305 = 5 \cdot 61
  • 306 = 2 \cdot {3^2} \cdot 17
  • 307 is prime.
  • 308 = {2^2} \cdot 7 \cdot 11
  • 309 = 3 \cdot 103
  • 310 = 2 \cdot 5 \cdot 31
  • 311 is prime.
  • 312 = {2^3} \cdot 3 \cdot 13
  • 313 is prime.
  • 314 = 2 \cdot 157
  • 315 = {3^2} \cdot 5 \cdot 7
  • 316 = {2^2} \cdot 79
  • 317 is prime.
  • 318 = 2 \cdot 3 \cdot 53
  • 319 = 11 \cdot 29
  • 320 = {2^6} \cdot 5
  • 321 = 3 \cdot 107
  • 322 = 2 \cdot 7 \cdot 23
  • 323 = 17 \cdot 19
  • 324 = {2^2} \cdot {3^4}
  • 325 = {5^2} \cdot 13
  • 326 = 2 \cdot 163
  • 327 = 3 \cdot 109
  • 328 = {2^3} \cdot 41
  • 329 = 7 \cdot 47
  • 330 = 2 \cdot 3 \cdot 5 \cdot 11
  • 331 is prime.
  • 332 = {2^2} \cdot 83
  • 333 = {3^2} \cdot 37
  • 334 = 2 \cdot 167
  • 335 = 5 \cdot 67
  • 336 = {2^4} \cdot 3 \cdot 7
  • 337 is prime.
  • 338 = 2 \cdot {13^2}
  • 339 = 3 \cdot 113
  • 340 = {2^2} \cdot 5 \cdot 17
  • 341 = 11 \cdot 31
  • 342 = 2 \cdot {3^2} \cdot 19
  • 343 = {7^3}
  • 344 = {2^3} \cdot 43
  • 345 = 3 \cdot 5 \cdot 23
  • 346 = 2 \cdot 173
  • 347 is prime.
  • 348 = {2^2} \cdot 3 \cdot 29
  • 349 is prime.
  • 350 = 2 \cdot {5^2} \cdot 7
  • 351 = {3^3} \cdot 13
  • 352 = {2^5} \cdot 11
  • 353 is prime.
  • 354 = 2 \cdot 3 \cdot 59
  • 355 = 5 \cdot 71
  • 356 = {2^2} \cdot 89
  • 357 = 3 \cdot 7 \cdot 17
  • 358 = 2 \cdot 179
  • 359 is prime.
  • 360 = {2^3} \cdot {3^2} \cdot 5
  • 361 = {19^2}
  • 362 = 2 \cdot 181
  • 363 = 3 \cdot {11^2}
  • 364 = {2^2} \cdot 7 \cdot 13
  • 365 = 5 \cdot 73
  • 366 = 2 \cdot 3 \cdot 61
  • 367 is prime.
  • 368 = {2^4} \cdot 23
  • 369 = {3^2} \cdot 41
  • 370 = 2 \cdot 5 \cdot 37
  • 371 = 7 \cdot 53
  • 372 = {2^2} \cdot 3 \cdot 31
  • 373 is prime.
  • 374 = 2 \cdot 11 \cdot 17
  • 375 = 3 \cdot {5^3}
  • 376 = {2^3} \cdot 47
  • 377 = 13 \cdot 29
  • 378 = 2 \cdot {3^3} \cdot 7
  • 379 is prime.
  • 380 = {2^2} \cdot 5 \cdot 19
  • 381 = 3 \cdot 127
  • 382 = 2 \cdot 191
  • 383 is prime.
  • 384 = {2^7} \cdot 3
  • 385 = 5 \cdot 7 \cdot 11
  • 386 = 2 \cdot 193
  • 387 = {3^2} \cdot 43
  • 388 = {2^2} \cdot 97
  • 389 is prime.
  • 390 = 2 \cdot 3 \cdot 5 \cdot 13
  • 391 = 17 \cdot 23
  • 392 = {2^3} \cdot {7^2}
  • 393 = 3 \cdot 131
  • 394 = 2 \cdot 197
  • 395 = 5 \cdot 79
  • 396 = {2^2} \cdot {3^2} \cdot 11
  • 397 is prime.
  • 398 = 2 \cdot 199
  • 399 = 3 \cdot 7 \cdot 19
  • 400 = {2^4} \cdot {5^2}

You might be interested in:

Fundamental Theorem of Arithmetic

Prime Factorization of an Integer

List of Prime Factorizations of Integers from 2 to 200

List of Prime Factorizations of Integers from 401 to 600

List of Prime Factorizations of Integers from 601 to 800

List of Prime Factorizations of Integers from 801 to 1,000