# List of Prime Factorizations of Integers from 201 to 400

Below is the list of prime factorizations of integers from 201 to 400. Prime factors that repeat are written as exponential expressions.

• $201 = 3 \cdot 67$
• $202 = 2 \cdot 101$
• $203 = 7 \cdot 29$
• $204 = {2^2} \cdot 3 \cdot 17$
• $205 = 5 \cdot 41$
• $206 = 2 \cdot 103$
• $207 = {3^2} \cdot 23$
• $208 = {2^4} \cdot 13$
• $209 = 11 \cdot 19$
• $210 = 2 \cdot 3 \cdot 5 \cdot 7$
• $211$ is prime.
• $212 = {2^2} \cdot 53$
• $213 = 3 \cdot 71$
• $214 = 2 \cdot 107$
• $215 = 5 \cdot 43$
• $216 = {2^3} \cdot {3^3}$
• $217 = 7 \cdot 31$
• $218 = 2 \cdot 109$
• $219 = 3 \cdot 73$
• $220 = {2^2} \cdot 5 \cdot 11$

• $221 = 13 \cdot 17$
• $222 = 2 \cdot 3 \cdot 37$
• $223$ is prime.
• $224 = {2^5} \cdot 7$
• $225 = {3^2} \cdot {5^2}$
• $226 = 2 \cdot 113$
• $227$ is prime.
• $228 = {2^2} \cdot 3 \cdot 19$
• $229$ is prime.
• $230 = 2 \cdot 5 \cdot 23$
• $231 = 3 \cdot 7 \cdot 11$

• $232 = {2^3} \cdot 29$
• $233$ is prime.
• $234 = 2 \cdot {3^2} \cdot 13$
• $235 = 5 \cdot 47$
• $236 = {2^2} \cdot 59$
• $237 = 3 \cdot 79$
• $238 = 2 \cdot 7 \cdot 17$
• $239$ is prime.
• $240 = {2^4} \cdot 3 \cdot 5$
• $241$ is prime.
• $242 = 2 \cdot {11^2}$
• $243 = {3^5}$
• $244 = {2^2} \cdot 61$
• $245 = 5 \cdot {7^2}$

• $246 = 2 \cdot 3 \cdot 41$
• $247 = 13 \cdot 19$
• $248 = {2^3} \cdot 31$
• $249 = 3 \cdot 83$
• $250 = 2 \cdot {5^3}$
• $251$ is prime.
• $252 = {2^2} \cdot {3^2} \cdot 7$
• $253 = 11 \cdot 23$
• $254 = 2 \cdot 127$
• $255 = 3 \cdot 5 \cdot 17$
• $256 = {2^8}$
• $257$ is prime.
• $258 = 2 \cdot 3 \cdot 43$

• $259 = 7 \cdot 37$
• $260 = {2^2} \cdot 5 \cdot 13$
• $261 = {3^2} \cdot 29$
• $262 = 2 \cdot 131$
• $263$ is prime.
• $264 = {2^3} \cdot 3 \cdot 11$
• $265 = 5 \cdot 53$
• $266 = 2 \cdot 7 \cdot 19$
• $267 = 3 \cdot 89$
• $268 = {2^2} \cdot 67$
• $269$ is prime.
• $270 = 2 \cdot {3^3} \cdot 5$
• $271$ is prime.
• $272 = {2^4} \cdot 17$
• $273 = 3 \cdot 7 \cdot 13$
• $274 = 2 \cdot 137$
• $275 = {5^2} \cdot 11$
• $276 = {2^2} \cdot 3 \cdot 23$
• $277$ is prime.
• $278 = 2 \cdot 139$
• $279 = {3^2} \cdot 31$
• $280 = {2^3} \cdot 5 \cdot 7$
• $281$ is prime.
• $282 = 2 \cdot 3 \cdot 47$
• $283$ is prime.
• $284 = {2^2} \cdot 71$
• $285 = 3 \cdot 5 \cdot 19$
• $286 = 2 \cdot 11 \cdot 13$
• $287 = 7 \cdot 41$
• $288 = {2^5} \cdot {3^2}$
• $289 = {17^2}$
• $290 = 2 \cdot 5 \cdot 29$
• $291 = 3 \cdot 97$
• $292 = {2^2} \cdot 73$
• $293$ is prime.
• $294 = 2 \cdot 3 \cdot {7^2}$
• $295 = 5 \cdot 59$
• $296 = {2^3} \cdot 37$
• $297 = {3^3} \cdot 11$
• $298 = 2 \cdot 149$
• $299 = 13 \cdot 23$
• $300 = {2^2} \cdot 3 \cdot {5^2}$
• $301 = 7 \cdot 43$
• $302 = 2 \cdot 151$
• $303 = 3 \cdot 101$
• $304 = {2^4} \cdot 19$
• $305 = 5 \cdot 61$
• $306 = 2 \cdot {3^2} \cdot 17$
• $307$ is prime.
• $308 = {2^2} \cdot 7 \cdot 11$
• $309 = 3 \cdot 103$
• $310 = 2 \cdot 5 \cdot 31$
• $311$ is prime.
• $312 = {2^3} \cdot 3 \cdot 13$
• $313$ is prime.
• $314 = 2 \cdot 157$
• $315 = {3^2} \cdot 5 \cdot 7$
• $316 = {2^2} \cdot 79$
• $317$ is prime.
• $318 = 2 \cdot 3 \cdot 53$
• $319 = 11 \cdot 29$
• $320 = {2^6} \cdot 5$
• $321 = 3 \cdot 107$
• $322 = 2 \cdot 7 \cdot 23$
• $323 = 17 \cdot 19$
• $324 = {2^2} \cdot {3^4}$
• $325 = {5^2} \cdot 13$
• $326 = 2 \cdot 163$
• $327 = 3 \cdot 109$
• $328 = {2^3} \cdot 41$
• $329 = 7 \cdot 47$
• $330 = 2 \cdot 3 \cdot 5 \cdot 11$
• $331$ is prime.
• $332 = {2^2} \cdot 83$
• $333 = {3^2} \cdot 37$
• $334 = 2 \cdot 167$
• $335 = 5 \cdot 67$
• $336 = {2^4} \cdot 3 \cdot 7$
• $337$ is prime.
• $338 = 2 \cdot {13^2}$
• $339 = 3 \cdot 113$
• $340 = {2^2} \cdot 5 \cdot 17$
• $341 = 11 \cdot 31$
• $342 = 2 \cdot {3^2} \cdot 19$
• $343 = {7^3}$
• $344 = {2^3} \cdot 43$
• $345 = 3 \cdot 5 \cdot 23$
• $346 = 2 \cdot 173$
• $347$ is prime.
• $348 = {2^2} \cdot 3 \cdot 29$
• $349$ is prime.
• $350 = 2 \cdot {5^2} \cdot 7$
• $351 = {3^3} \cdot 13$
• $352 = {2^5} \cdot 11$
• $353$ is prime.
• $354 = 2 \cdot 3 \cdot 59$
• $355 = 5 \cdot 71$
• $356 = {2^2} \cdot 89$
• $357 = 3 \cdot 7 \cdot 17$
• $358 = 2 \cdot 179$
• $359$ is prime.
• $360 = {2^3} \cdot {3^2} \cdot 5$
• $361 = {19^2}$
• $362 = 2 \cdot 181$
• $363 = 3 \cdot {11^2}$
• $364 = {2^2} \cdot 7 \cdot 13$
• $365 = 5 \cdot 73$
• $366 = 2 \cdot 3 \cdot 61$
• $367$ is prime.
• $368 = {2^4} \cdot 23$
• $369 = {3^2} \cdot 41$
• $370 = 2 \cdot 5 \cdot 37$
• $371 = 7 \cdot 53$
• $372 = {2^2} \cdot 3 \cdot 31$
• $373$ is prime.
• $374 = 2 \cdot 11 \cdot 17$
• $375 = 3 \cdot {5^3}$
• $376 = {2^3} \cdot 47$
• $377 = 13 \cdot 29$
• $378 = 2 \cdot {3^3} \cdot 7$
• $379$ is prime.
• $380 = {2^2} \cdot 5 \cdot 19$
• $381 = 3 \cdot 127$
• $382 = 2 \cdot 191$
• $383$ is prime.
• $384 = {2^7} \cdot 3$
• $385 = 5 \cdot 7 \cdot 11$
• $386 = 2 \cdot 193$
• $387 = {3^2} \cdot 43$
• $388 = {2^2} \cdot 97$
• $389$ is prime.
• $390 = 2 \cdot 3 \cdot 5 \cdot 13$
• $391 = 17 \cdot 23$
• $392 = {2^3} \cdot {7^2}$
• $393 = 3 \cdot 131$
• $394 = 2 \cdot 197$
• $395 = 5 \cdot 79$
• $396 = {2^2} \cdot {3^2} \cdot 11$
• $397$ is prime.
• $398 = 2 \cdot 199$
• $399 = 3 \cdot 7 \cdot 19$
• $400 = {2^4} \cdot {5^2}$

You may also be interested in these related math lessons or tutorials:

Fundamental Theorem of Arithmetic

Prime Factorization of an Integer

List of Prime Factorizations of Integers from 2 to 200

List of Prime Factorizations of Integers from 401 to 600

List of Prime Factorizations of Integers from 601 to 800

List of Prime Factorizations of Integers from 801 to 1,000